
COP 4610L: Servlets – Part 3 Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Fall 2007

Introduction to Servlet Technology– Part 3

COP 4610L: Applications in the Enterprise
Fall 2007

Introduction to Servlet Technology– Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4610L/fall2007

COP 4610L: Servlets – Part 3 Page 2 Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

• Your Tomcat installation includes the servlet-api.jar
file. This file can be found in the /common/lib folder. Copy
this file into your jdk/jre/lib/ext folder to allow the java
compiler access to the javax.servlet package.

• Your Java set-up may already have this installed.

COP 4610L: Servlets – Part 3 Page 3 Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

You need this .jar file here
to allow your Java
environment to interface to
the servlet container
provided by Tomcat.

You’ve already needed
this file for Java to
interface to a MySQL
database. This will still
be needed when our
servlets access the
database on the
backend.

COP 4610L: Servlets – Part 3 Page 4 Mark Llewellyn ©

More XHTML Document Details
• Let’s look a bit closer at what happens in our servlet as it executes.

(See the servlet code on page 23 of servlets-part 2 notes.)

– This line begins the overridden method doGet to respond to the get
requests. In this case, the HttpServletRequest object
parameter represents the client’s request and the
HttpServletResponse object parameter represents the server’s
response to the client.

– If method doGet is unable to handle a client’s request, it throws an
exception of type javax.servlet.ServletException. If
doGet encounters an error during stream processing (when reading
from the client or writing to the client), it throws a
java.io.IOException.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

COP 4610L: Servlets – Part 3 Page 5 Mark Llewellyn ©

More XHTML Document Details (cont.)

• The first line above uses the response object’s setContentType
method to specify the content type of the document to be sent as the
response to the client. This enables the client browser to understand and
handle the content it receives from the server. The content type is also
referred to as the MIME (Multipurpose Internet Mail Extension) type of
the data. In this servlet, the content type is text/html to indicate to
the browser that the response is an XHTML document.

• The second line above uses the response object’s getWriter method to
obtain a reference to the PrintWriter object that enables the servlet to
send content to the client. If the response is binary data, like an image,
method getOutputStream would be used to obtain a reference to a
ServletOutputStream object.

response.setContentType("text/html");
PrintWriter out = response.getWriter();

COP 4610L: Servlets – Part 3 Page 6 Mark Llewellyn ©

More XHTML Document Details (cont.)

• These lines create the XHTML document shown in the box on page 23 of
servlets-part 2 notes.

out.println("<?xml version = \"1.0\"?>");
out.println("<!DOCTYPE html PUBLIC \"- //W3C//DTD " +

"XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
"/TR/xhtml1/DTD/xhtml1-strict.dtd\">");

out.println("<html xmlns =
\"http://www.w3.org/1999/xhtml\">");

// head section of document
out.println("<head>");
out.println("<title>Welcome to Servlets!</title>");
out.println("</head>");

// body section of document
out.println("<body>");
out.println("<h1>Welcome To The World Of Servlet
Technology!</h1>");

out.println("</body>");
// end XHTML document

out.println("</html>");

COP 4610L: Servlets – Part 3 Page 7 Mark Llewellyn ©

Deploying a Web Application
• Servlets, JSPs and their supporting files are deployed as part of a

Web application.

• Typically, Web applications are deployed in the webapps
subdirectory of Tomcat.

• A Web application has a well-known directory structure in which
all the files that are part of the application reside.

• This directory structure is created by the server administrator in
the webapps directory, or the entire directory structure can be
archived in a Web application archive file known as a WAR file
(ending with a .war file extension) which is placed in the
webapps directory.

COP 4610L: Servlets – Part 3 Page 8 Mark Llewellyn ©

Deploying a Web Application (cont.)
• The Web application directory structure contains a context root, which is

the top-level directory for an entire Web application along with several
subdirectories as shown below:

context root – The root directory for the Web application. All the JSPs, HTML
documents, servlets and supporting files such as images and class files reside in
this directory or one of the subdirectories. The name of this directory is specified
by the Web application creator. To provide structure in a Web application,
subdirectories can be placed in the context root. It is common to see an images
subdirectory, for example.

WEB-INF – This subdirectory contains the Web application deployment
descriptor web.xml.

WEB-INF/classes – This subdirectory contains the servlet class files and other
supporting class files used in a Web application. If the classes are part of a
package, the complete package directory structure would begin here.

WEB-INF/lib – This subdirectory contains Java archive (JAR) files. The JAR
files can contain servlet class files and other supporting class files.

COP 4610L: Servlets – Part 3 Page 9 Mark Llewellyn ©

Deploying a Web Application (cont.)

• As we mentioned in the previous section of notes, Tomcat will default to
a welcome page which is specified in the web.xml file. The standard
default values were shown on page 9 in the previous set of notes.

• If you do not create one of these files, the default page for a web
application is not very appealing.

COP 4610L: Servlets – Part 3 Page 10 Mark Llewellyn ©

Deploying a Web Application (cont.)
• Since we would like our clients to see something more appropriate that

the default web application page, you should create your own web
application welcome page.

• This page is simply an HTML page and I’ve created one for the web
applications we create from this point forward. I’ve simply modeled the
page using our course web page as a template. The code for this page is
included on the course code page if you want to use it, but feel free to
design your own.

• I’ll utilize this page as a home page for all of our servlets and JSPs that
we’ll see later in the course.

• I’ve also created a new web application named cop4610 that we’ll use for
our future servlets and JSPs.

• Now, when the client enters the URL, http://localhost:8080/cop4610 they
will see the home page shown in the next slide.

COP 4610L: Servlets – Part 3 Page 11 Mark Llewellyn ©

COP 4610L: Servlets – Part 3 Page 12 Mark Llewellyn ©

Deploying a Web Application (cont.)

• The Web application directory structure that I set up for the
cop4610 web application looks like the following:

C:\program files\Apache Software Foundation\Tomcat 5.5.25\webapps
…
\cop4610

index.html
WelcomeServlet.html
WelcomeServlet2.html
\images
\WEB-INF

web.xml
\classes

WelcomeServlet.class
WelcomeServlet2.class
WelcomeServlet.java
WelcomeServlet2.java

The “home page”

HTML “driver” files to initiate
the servlets.

Web application configuration file

Java class files (and source
files) for the servlets

COP 4610L: Servlets – Part 3 Page 13 Mark Llewellyn ©

A Closer Look at the web.xml File

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<!-- General description of your Web application -->
<display-name>

Servlet Technology
</display-name>

<description>
This is the Web application in which we will
demonstrate our JSP and Servlet examples.

</description>

The web-app element
defines the configuration
of each servlet in the Web
application and the servlet
mapping for each servlet.

The display-name element
specifies a name which can
be displayed to the server
administrator on which the
Web application is installed.

The description element
specifies a description of the
Web application that can also
be displayed to the server
administrator.

COP 4610L: Servlets – Part 3 Page 14 Mark Llewellyn ©

A Closer Look at the web.xml File
<!-- Servlet definitions -->

<servlet>
<servlet-name>welcome1</servlet-name>

<description>
A simple welcome servlet that handles an HTTP get request.

</description>

<servlet-class>
WelcomeServlet

</servlet-class>
</servlet>

<!-- Servlet mappings -->
<servlet-mapping>

<servlet-name>welcome1</servlet-name>
<url-pattern>/welcome1</url-pattern>

</servlet-mapping>

</web-app>

Element servlet describes a servlet.
There is one of these for each
servlet in the Web application.
Element servlet-name is the name
chosen for the servlet.

Element description describes
the servlet and can be displayed
to the server administrator.

Element server-class specifies the compiled servlet’s fully qualified path
name. In this case the servlet is defined by the class WelcomeServlet.

Element servlet-mapping specifies the servlet-
name and url-pattern elements. The URL pattern
helps the server determine which requests are
sent to the servlet (welcome1). Since this web
application will be installed as part of the cop4610
context root, the relative URL supplied to the
browser to invoke the servlet is
/cop4610/welcome1.

COP 4610L: Servlets – Part 3 Page 15 Mark Llewellyn ©

Handling HTTP get Requests Containing Data

• When a requesting a document or resource from a Web server,
it is often the case that data needs to be supplied as part of the
request. The second servlet example in the previous set of
notes responds to an HTTP get request that contains the name
entered by the user. The servlet uses this name as part of the
response to the client.

• Parameters are passes as name-value pairs in a get request.
Within the source code for the second WelcomeServlet2 you
will find the following line (see next page):

String clientName = request.getParameter(“clientname");

Invoke request object’s
getParameter method

COP 4610L: Servlets – Part 3 Page 16 Mark Llewellyn ©

Invoke request object’s
getParameter method

COP 4610L: Servlets – Part 3 Page 17 Mark Llewellyn ©

Handling HTTP get Requests Containing Data
(cont.)

• The WelcomeServlet2.html document provides a form in which
the user can input their name into the text input element
clientname and click the Submit button to invoke the servlet.

• When the user clicks the Submit bitton, the values of the input
elements are placed in name-value pairs as part of the request to
the server.

• Notice in the screen shot on the next page that the Tomcat server
has appended ?clientname=Mark to the end of the action
URL. The ? separates the query string (i.e., the data passed as part
of the get request) from the rest of the URL in a get request.
The name-value pairs are passed with the name and value
separated by =. If there is more than one name-value pair, each
pair is separated by an &.

COP 4610L: Servlets – Part 3 Page 18 Mark Llewellyn ©

Handling HTTP get Requests Containing Data
(cont.)

Context root is /cop4610

Servlet alias is welcome2

Form in WelcomeServlet2.html that specifies an
input whose type is “text” and whose name is
“clientname”

COP 4610L: Servlets – Part 3 Page 19 Mark Llewellyn ©

Notice that the browser has appended
?firstname=Mark to the end of the action
URL when WelcomeServlet2 is invoked

Note: The same servlet could have been invoked directly by typing in directly to the browsers Address
or Location field. This is shown in the overlay below

Client directly types this URL.

COP 4610L: Servlets – Part 3 Page 20 Mark Llewellyn ©

Handling HTTP post Requests

• An HTTP post request is typically used to send data from
an HTML form to a server-side form handler that processes
the data. For example, when you respond to a Web-based
survey, a post request normally supplies the information
you entered into the form to the Web server.

• If you were to replace the doGet method in WelcomeServlet2
with a doPost method, nothing would change in the apparent
execution of the servlet with the exception that the values
passed to the server are not appended to the request URL.

• This is illustrated by WelcomeServlet3 which is exactly the
same as WelcomeServlet2 except that it uses the doPost
method. Notice how the URL differs between the two
versions.

COP 4610L: Servlets – Part 3 Page 21 Mark Llewellyn ©

WelcomeServlet2 uses the get method to supply the data to the form whereas
WelcomeServlet3 uses the post method to do the same. Notice that the data is
appended to the URL when the get method is used but it is not appended to the
URL when the post method is used.

WelcomeServlet2 uses a get method.

WelcomeServlet3 uses a post method.

COP 4610L: Servlets – Part 3 Page 22 Mark Llewellyn ©

Modifications Necessary to web.xml File For
Handling Additional Servlets

• In addition to modifying our index.html (homepage) file
to include descriptors for launching the additional
WelcomeServlet2 and WelcomeServlet3 servlets, we also
need to modify the web.xml configuration file to register
these servlets with Tomcat.

• We will need to include servlet definitions and servlet
mappings for both WelcomeServlet2 and WelcomeServlet3.

• The additional statements that must be included in this file
are shown on the next slide.

• You must also include the Java class files for these servlets
in the classes folder.

COP 4610L: Servlets – Part 3 Page 23 Mark Llewellyn ©

<servlet>
<servlet-name>welcome2</servlet-name>

<description>
A more personal welcome servlet

</description>

<servlet-class>
WelcomeServlet2

</servlet-class>
</servlet>

<servlet>
<servlet-name>welcome3</servlet-name>

<description>
A more personal welcome serlvet - using a post action

</description>

<servlet-class>
WelcomeServlet3

</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>welcome2</servlet-name>
<url-pattern>/welcome2</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>welcome3</servlet-name>
<url-pattern>/welcome3</url-pattern>

</servlet-mapping>

Servlet descriptions

Servlet
mappings

COP 4610L: Servlets – Part 3 Page 24 Mark Llewellyn ©

Redirecting Requests to Other Resources

• Sometimes it is useful to redirect a request to a different
resource. For example, a servlet’s job might be to determine
the type of the client’s browser and redirect the request to a
Web page that was designed specifically for that browser.

• The same technique is used when redirecting browsers to an
error page when the handling of a request fails.

• Shown on the next two pages is the source code for a
ReDirectionServlet (available on the course website)
which redirects the client to another resource selected from a
list of resources.

COP 4610L: Servlets – Part 3 Page 25 Mark Llewellyn ©

// Redirecting a client to a different Web page.
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class ReDirectionServlet extends HttpServlet {
// process "get" request from client
protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

String location = request.getParameter("page");
if (location != null)

if (location.equals("COP4610"))
response.sendRedirect("http://www.cs.ucf.edu/courses/cop4610L/fall2007");

else
if (location.equals("welcome1"))

response.sendRedirect("welcome1");
else

if (location.equals ("error"))
response.sendRedirect("error");

RedirectionServlet.java

sendRedirect is a method within the
HTTPServletResponse Interface. The
string parameter is utilized as the URL to
which the client’s request is redirected.

COP 4610L: Servlets – Part 3 Page 26 Mark Llewellyn ©

// code that executes only if this servlet does not redirect the user to another page
response.setContentType("text/html");
PrintWriter out = response.getWriter();

// start XHTML document
out.println("<?xml version = \"1.0\"?>");
out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +

"XHTML 1.0 Strict//EN\" \"http://www.w3.org" + "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
out.println("<html xmlns = \"http://www.w3.org/1999/xhtml\">");

// head section of document
out.println("<head>");
out.println("<title>Invalid page</title>");
out.println("</head>");

// body section of document
out.println("<body>");
out.println("<h1>Invalid page requested</h1>");
out.println("<p><a href = " +

"\"RedirectionServlet.html\">");
out.println("Click here for more details</p>");
out.println("</body>");

// end XHTML document
out.println("</html>");
out.close(); // close stream to complete the page

}
}

COP 4610L: Servlets – Part 3 Page 27 Mark Llewellyn ©

ReDirectionServlet.html

COP 4610L: Servlets – Part 3 Page 28 Mark Llewellyn ©

The servlet and servlet-mapping Portions Of
web.xml Modified To Handle The

ReDirectionServlet
<servlet>

<servlet-name>redirect</servlet-name>
<description>

A redirection servlet.
</description>
<servlet-class>

ReDirectionServlet
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>redirect</servlet-name>
<url-pattern>/redirect</url-pattern>

</servlet-mapping>

COP 4610L: Servlets – Part 3 Page 29 Mark Llewellyn ©

The ReDirectionServlet

User clicks this link as
is redirected to the

servlet shown below.

